Abstract

The precipitation behavior of inhibitors and their influence on final Goss texture formation in grain-oriented electrical steels produced by compact strip processing technology with a reheating temperature lower than 1200°C were investigated under two distinct intermediate annealing methods: conventional intermediate recrystallization annealing and a new intermediate decarburizing and recrystallization annealing method without final decarburizing after the second cold rolling. The initiation of secondary recrystallization, the distributions of second phase particles, the final Goss texture, and the grain structure were observed. The new technology could maintain higher inhibitor densities because the deformed matrix could provide higher site densities for inhibitor nucleation before secondary recrystallization, resulting in a relatively higher inhibition effect of the second phase particles. The new technology could also compensate for the disadvantages of fewer inhibitors induced by fewer dissolved Mn and S elements in the matrix during lower reheating temperature for hot rolling. The final sheet produced after the secondary recrystallization annealing obtained stronger Goss texture, larger grain size, and better magnetic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.