Abstract

Al / HfO 2 / SiN x : H / n -Si metal-insulator-semiconductor capacitors have been studied by electrical characterization. Films of silicon nitride were directly grown on n-type silicon substrates by electron cyclotron resonance assisted chemical vapor deposition. Silicon nitride thickness was varied from 3 to 6.6 nm. Afterwards, 12 nm thick hafnium oxide films were deposited by the high-pressure sputtering approach. Interface quality was determined by using current-voltage, capacitance-voltage, deep-level transient spectroscopy (DLTS), conductance transients, and flatband voltage transient techniques. Leakage currents followed the Poole–Frenkel emission model in all cases. According to the simultaneous measurement of the high and low frequency capacitance voltage curves, the interface trap density obtained for all the samples is in the 1011 cm−2 eV−1 range. However, a significant increase in this density of about two orders of magnitude was obtained by DLTS for the thinnest silicon nitride interfacial layers. In this work we probe that this increase is an artifact that must be attributed to traps existing at the HfO2/SiNx:H intralayer interface. These traps are more easily charged or discharged as this interface comes near to the substrate, that is, as thinner the SiNx:H interface layer is. The trapping/detrapping mechanism increases the capacitance transient and, in consequence, the DLTS measurements have contributions not only from the insulator/substrate interface but also from the HfO2/SiNx:H intralayer interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.