Abstract

CrAlN coatings have earned significant attention for use in cutting tool coating applications due to their excellent properties such as high hardness and superb oxidation resistance. It is well known that the interlayer between the coating and the substrate can influence the mechanical properties of the coatings. In this work, three interlayers—CrN, CrZrN, and CrN/CrZrSiN—were synthesized between a CrAlN coating and a tungsten carbide substrate to improve the mechanical properties and thermal stability of the CrAlN coating. All the CrAlN coatings with their respective interlayers showed high hardness values in the range of 34.5 to 35.1 GPa, and they were not significantly affected by the interlayer type. However, wear and scratch tests showed that the CrAlN coatings with CrN and CrN/CrZrSiN interlayers exhibited an improved friction coefficient of 0.33 and adhesion strength (Lc2) of 69 N compared to the CrAlN coating with the CrZrN interlayer. These improved wear properties were attributed to the H/E ratio of the interlayer between the coating and the substrate, in that the CrN and CrZrSiN interlayers effectively induced a smooth transition of the coating stress under a loading condition. During the thermal stability tests, the hardness of the CrAlN coating with the CrN/CrZrSiN interlayer was maintained up to 1000 °C due to the excellent oxidation resistance of the CrZrSiN layer, which contained an amorphous SixNy phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call