Abstract
Calculations of renormalized perpendicular conductivity within Kubo formula employing single particle temperature dependent Green's function formalism for bilayer graphene has been attempted. On the basis of numerical analysis, perpendicular conductivity as a function of temperature, interlayer coupling, onsite Coulomb interaction and carrier concentration per site has been analyzed for both AA- and AB-stacked bilayer graphene. It is found that perpendicular conductivity increases with interlayer coupling and also with temperature at low temperatures while at higher temperatures, there is saturation in perpendicular conductivity. Influences of onsite Coulomb interaction and carrier concentration per site on perpendicular conductivity is just opposite to each other while onsite Coulomb energy suppresses the rate of increase of σ⊥/σ⊥0 with temperature, on the other hand increase in carrier density per site enhance this rate significantly. Finally, theoretically obtained results on temperature dependent perpendicular conductivity are viewed in terms of electronic transport data as well as recent theoretical works available in bilayer graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.