Abstract

In Manduca sexta, the larval abdominal prolegs and their muscles degenerate at pupation. The proleg motor neurons undergo a period of dendritic regression, after which a specific subset of them dies. The surviving motor neurons undergo dendritic outgrowth during pupal-adult development, and most die after adult emergence. All of these events are regulated hormonally by ecdysteroids and juvenile hormone, but interactions of the motor neurons with other cells may potentially contribute as well. To investigate the possible influence of interganglionic neural interactions, we chronically isolated individual abdominal ganglia by severing the adjacent rostral and caudal connectives in the larval stage. Subsequent metamorphic changes in proleg motor neurons were examined in the isolated ganglia and ganglia adjacent to the isolated ganglia. Two abnormalities were observed: (1) some imprecision in the timing of motor neuron death, both at pupation and after adult emergence, and (2) the growth of ectopic neurites outside the neuropil boundaries during pupal-adult development (in ganglia with or without neuromas caused by connective transections). Other aspects of proleg motor neuron metamorphosis, including the segment-specific death of motor neurons at pupation, were the same as that in intact and sham-operated insects. Thus, interganglionic interactions appear to play a relatively minor role in the steroid-mediated metamorphic transformation of proleg motor neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call