Abstract

In the operation of bioreactors, the fluid movement promotes mixing between sludge and substrate. The dynamics of this system are complex, and the interaction between the phases is difficult to evaluate accurately. In this work, Computational Fluid Dynamics is applied to simulate a pilot-scale anaerobic sequencing batch reactor, using a three-dimensional, transient and multiphase modeling. Several correlations were applied to estimate the interfacial forces. Results indicate that the use of different coefficients for the drag and lift forces strongly affects the predicted turbulent kinetic energy, and thus the mixture estimation in the bioreactor. The use of the drag as the only interfacial force provided an average turbulent kinetic energy close to the value found using a more complete model. However, the absence of lift and virtual mass forces had a significant impact on the resulting turbulence distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.