Abstract

A simple cluster–ligand interaction model is introduced to describe the surface passivation of bimetallic gold clusters by SUP (Thioureidopeptide) and SeUP (Selenoureidopeptide) ligands. The conformational search based on neutral peptide binding modes and their computed interaction energies show the existence of various structural isomers within 10 kcal mol−1. Further, the negatively charged deprotonated peptide was found to strongly interact with metal cluster through the carboxylate unit. Irrespective of the mode of binding and configuration the metal cluster found to exist in parent geometry in all three charge states. The calculated HOMO-LUMO gap of ligated clusters predicts an increase in chemical stability after the ligation. Moreover, the ligation was found to decrease the energy required for oxidation and reduction. The excited-state calculations indicate absorption maxima at 200–400 nm corresponds to the LMCT transition. In all the hybrid cluster models the donor and acceptor end of the peptide were found to remain intact. However, the charge migration dynamics observed only in the homo-metallic gold-ligand hybrids, owing to the larger charge separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call