Abstract

Excessive thermal stress can cause the failure of a solid oxide fuel cell (SOFC), and an inhomogeneous temperature field is one of the reasons for thermal stress in the cell. In the present work, the bi-dimensional thermo-mechanical coupling models of SOFCs with different interface morphologies including planar and corrugated cells are proposed. The temperature distribution of two types of cells under the action of heat conduction is analyzed. Further, the inhomogeneous temperature field caused by gas flow is used as the thermal load to compare the thermal stress distribution of planar and corrugated cells. The influence of interface morphology on the temperature distribution, stress distribution and the contribution of the temperature gradient to stress distribution are investigated. This research provides a reference for reducing thermal stress and improving the stability of SOFC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call