Abstract

Time-resolved particle image velocimetry and Mie-scattering of fuel droplets at 16 kHz were used to capture simultaneously the temporal evolution of the in-cylinder flow field and spray formation within a direct-injection spark-ignition engine. The engine was operated in stratified combustion mode, with stratified mixtures created by a triple injection late in the compression stroke. The impact of geometric variation of the intake port on in-cylinder flow and flow–spray interactions was investigated, focusing on the second injection, since it provides ignitable mixtures at the time of ignition and is subject to strong fluctuations, rather than the first injection, which is very reproducible. Flow field statistics conditioned on the spray shape of the second injection revealed regions with macroscopic cycle-to-cycle flow variations, which correlated with the spray for all recorded cycles. The flow–spray interaction was traced back to before the first injection using correlation analysis, which revealed that cycle-to-cycle fluctuations of the large-scale tumble vortex had a big impact on the spray shape of the second injection, while the first injection was unaffected. This indicates that the origin of the spray fluctuations may be during intake. Despite significant flow modifications due to the intake port geometry variation, fluctuation levels of the second injection were the same for both geometries, that is, spray fluctuations were not sensitive to the geometric change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.