Abstract

The paper determined the influence of inorganic substances and high-molecular organic compounds on the decomposition of diclofenac, ibuprofen, and carbamazepine in the process of photocatalysis conducted with the presence of Titanium dioxide (TiO2). It was determined that the presence of such ions as CO 3 2 − , HCO 3 − , HPO 4 2 − as well as SO 4 2 − inhibited the decomposition of carbamazepine, whereas the efficiency of diclofenac degradation was decreased only by the presence of CO 3 2 − and HCO 3 − anions. In case of ibuprofen sodium salt (IBU), all investigated anions influenced the increase in its decomposition rate. The process of pharmaceutical photooxidation conducted in suspensions with Al3+ and Fe3+ cations was characterized by a significantly decreased efficiency when compared to the solution deprived of inorganic compounds. The addition of Ca2+, Mg2+ and NH4+ affected the increase of reaction rate constant value of diclofenac and ibuprofen decomposition. On the other hand, high molecular organic compounds present in the model effluent additionally catalysed the degradation process of pharmaceutical compounds and constituted an additional sorbent that enabled to decrease their concentration. Toxicological analysis conducted in deionized water with pharmaceutical compounds’ patterns proved the production of by-products from oxidation and/or reduction of micropollutants, which was not observed for model effluent irradiation.

Highlights

  • Pharmaceutical compounds constitute one of the largest groups among organic micropollutants that are present in the aquatic environment [1]

  • This paper describes the efficiency of removal of three medications most frequently identified in the aquatic environment, i.e., diclofenac, ibuprofen, and carbamazepine, from water suspensions in the process of heterogenic photocatalysis with the presence of selected inorganic compounds and organic substances

  • Patterns of pharmaceutical micropollutants used during the research were from the group of nonsteroidal anti-inflammatory analgesics supplied as diclofenac sodium salt (DCF) and ibuprofen sodium salt (IBU) as well as a psychoactive drug—carbamazepine (CBZ) from Sigma-Aldrich (Poznań, Poland) (Table 1)

Read more

Summary

Introduction

Pharmaceutical compounds constitute one of the largest groups among organic micropollutants that are present in the aquatic environment [1]. Wastewater treatment plants that apply conventional wastewater treatment methods based mainly on activated sludge methods that enable to decrease the concentration of high molecular organic compounds and biogenic compounds do not guarantee a complete elimination of pharmaceutical micropollutants [5] classified as hardly biodegradable substances [6]. One of the methods that guarantees high removal rates of organic substances including pharmaceutical compounds [7,8,9] is the process of heterogenic photocatalysis conducted with the application of catalysts of a different type; out of them nanomolecules of Titanium dioxide (TiO2 ) are described in the literature most frequently [10].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.