Abstract

The submerged combustion vaporizer (SCV) is a new kind of vaporizer for liquefied natural gas (LNG). In this paper, a numerical study has been carried out to investigate the heat transfer characteristics of supercritical LNG in horizontal tubes. The thermo-physical properties of supercritical LNG were used for this study, and the influence of inlet LNG mass flow rate on heat transfer was investigated. Numerical results showed that the LNG flow in horizontal tubes included two stages. In the first stage, the surface heat transfer coefficients increased significantly with the increase of the fluid bulk temperature and reached a maximum value when the fluid bulk temperature equaled the pseudo-critical point . After the maximum, the surface heat transfer coefficients fell rapidly with the increase of the fluid bulk temperature. With increasing the inlet LNG mass flow rate, the surface heat transfer coefficients increased due to the increased fluid velocity in horizontal tubes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call