Abstract

Dual-fuel (DF) engines offer great fuel flexibility since they can either run on gaseous or liquid fuels. In the case of diesel pilot-ignited DF engines, the main source of energy is provided by gaseous fuel, whereas the diesel fuel acts only as an ignition source. Therefore, a proper auto-ignition of the pilot fuel is of utmost importance for combustion in DF engines. However, auto-ignition of the pilot fuel suffers from lower compression temperatures of Miller or Atkinson valve timings. These valve timings are applied to increase efficiency and lower nitrogen oxide (NOx) engine emissions. In order to improve the ignition, it is necessary to understand which parameters influence the ignition in DF engines. For this purpose, experiments were conducted and the influence of parameters, such as injection pressure, pilot fuel quantity, compression temperature, and air–fuel (A/F) equivalence ratio of the homogenous natural gas–air mixture were investigated. The experiments were performed on a periodically chargeable combustion cell using optical high-speed recordings and thermodynamic measurement techniques for pressure and temperature. The study reveals that the quality of the diesel pilot ignition in terms of short ignition delay and a high number of ignited sprays significantly depends on the injection parameters and operating conditions. In most cases, the pilot fuel suffers from too high dilution due to its small quantity and long ignition delays. This results in a small number of ignited sprays and consequently leads to longer combustion durations. Furthermore, the experiments confirm that the natural gas of the background mixture influences the auto-ignition of the diesel pilot oil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.