Abstract

Pinus radiata D. Don trees from six clones, grown at initial spacings of 2500 stems ha −1 and 833 stems ha −1 were destructively harvested. For these trees wood properties were measured on radial slices sampled at a height of 1.4 m above the ground. Relative to wide spacing, close initial stand spacing significantly reduced microfibril angle (MFA) and ring width and significantly increased dynamic modulus of elasticity (MOE), fibre length, latewood percentage and cell wall thickness. Density and fibre width were not significantly different between spacing treatments. Examination of the influence of genetic population on wood properties indicated that genotype significantly influenced MFA, MOE and ring width. The key wood properties MFA, MOE and fibre length were regressed against tree diameter, height and stem slenderness. All three wood properties were most strongly correlated with stem slenderness. Multiple regression models developed for MFA, MOE and ring width accounted for respectively 62%, 81% and 58% of the variation in these variables. The following changes occurred in sampled properties with increasing ring number: MFA and ring width declined markedly; MOE and fibre length increased markedly; latewood percentage and cell wall thickness increased slightly; and density and fibre width did not show any radial trend.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.