Abstract

During a switch event in a power semiconductor device temperature changes of up to 300K can occur in the Cu layer. Repeated switching operations causes cyclic thermal cycling which may finally lead to thermomechanical fatigue with severe microstructural changes. In this study, the influence of the starting microstructure and film thickness (600nm and 5000nm) on thermomechanical fatigue was investigated for epitaxial and polycrystalline Cu films for up to 1000 thermal cycles. Severe surface roughening and a texture change (crystal rotation) are detected during thermal cycling for the polycrystalline Cu films, while the epitaxial films maintain their microstructure. Controlling the initial microstructure of a Cu layer in a device exposed to cyclic thermomechanical straining is a route to delay surface damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call