Abstract

Hot workability of Ti -6 Al -4 V alloy with different initial microstructures was investigated by considering processing maps and the dynamic material deformation behavior. The emphasis has been focused on the effect of initial microstructure (equiaxed versus bimodal structure). Process maps were generated using the dynamic material model (DMM), unifying the relationships between constitutive deformation behavior, hot workability and microstructures evolution. Also, the flow instability was investigated using the various flow instability criteria and microstructural analysis. To establish the processing maps with different initial microstructures, high temperature compression tests were carried out at various temperatures and strain rates up to a true strain of 0.7. Microstructural changes occurring during the deformation were analyzed in terms of high temperature deformation mechanisms. Finally the useful instability criterion for predicting the forming defects was suggested through the compression test results with different temperatures and strain rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call