Abstract

<p>Batch adsorption experiments were performed to investigate influences of experimental conditions such as initial uranium concentrations (0, 1 x 10<sup>-3</sup>, 1 x 10<sup>-2</sup>, 0.1, 0.5, 1 mg/L) and pHs of solution (4, 7 and 9.5) on uranium adsorption in three types of clay (kaolinite, montmorillonite, and bentonite). For all experiments, the adsorption of uranium could be described by the linear isotherm model at solution concentrations less than 1 mg/L, showing high values of correlation coefficient (R2 > 0.98). The adsorption efficiencies of montmorillonite and kaolinite for all pHs are more than 91% and 87%, respectively. The effect of pH on the adsorption of uranium was not found in kaolinite and montmorillonite for all initial concentrations. However, the adsorption efficiency of bentonite was lower than other clay types (< 75%). Solutions with low initial concentrations (< 1 x 10<sup>-2</sup> mg/L) achieved high efficiencies for adsorption of uranium (> 99%) at all pHs, while low efficiencies were observed in solutions with high initial concentrations (> 0.1 mg/L) at pH 4 (47%), pH 7 (59%) and pH 9.5 (43%). It is concluded that montmorillonite and kaolinite can be used as an effective adsorbent for removing uranium from aqueous solutions.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.