Abstract

Oviductal endosalpingeal cells were isolated mechanically from heifers and cultured until there was 100% confluency. The cells were loaded with the Ca(2+)-sensitive fluorochrome, fura-2/acetoxymethylester, and cytosolic free calcium ([Ca2+]i) was monitored by spectrofluorimetry. Platelet-activating factor, at a concentration of 30 nmol l-1, induced an intracellular Ca2+ increase in cultured bovine oviductal cells, mainly via influx from the extracellular space. In fura-2-loaded oviductal cells, different Ca2+ channel blockers were investigated to characterize the pathways responsible for the Ca2+ influx. The negative effects of Ni(2+)-, La(3+)-activated K+ channel blockers, such as apamin and charybdotoxin, and Ca2+ channel blockers, such as dotarizine, on the platelet-activating factor-induced [Ca2+]i increase indicate the minor participation of the voltage-gated Ca2+ channels. TMB-8 and flufenamic acid blocked the platelet-activating factor-induced Ca2+ increase directly on non-selective cationic channels or acted via a Ca2+ release-triggered Ca2+ influx. Platelet-activating factor, at concentrations of 1.25 mumol l-1 and 2.5 mumol l-1, significantly stimulated the proliferation and depolarization of oviductal cells, but 10 mumol l-1 significantly decreased both parameters and exerted a cytotoxic effect on cells. After incubation with TMB-8 or flufenamic acid, the cell proliferation was inhibited in a concentration-dependent manner, with IC50 values of 26.57 mumol l-1 and 95.29 mumol l-1, respectively. The depolarization was significantly inhibited at 50 mumol l-1 for both TMB-8 and flufenamic acid. The results of the present study may contribute to further understanding of the mechanism behind the actions of platelet-activating factor on oviductal cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call