Abstract

Polyurethane–acrylic (PU–AC) hybrid latexes were prepared. Main monomers for PU preparation were isophorone diisocyanate, DMPA (dimethylol propanic acid) and polypropylene oxides (PPO) of different molecular weights. Acrylic monomers included butyl acrylate, methyl methacrylate and a crosslinker, trihydroxymethyl propane triacrylates (TMPTA). Several important ingredients in PU–AC latex preparation, such as surfactants, initiator, DMPA and PU/AC ratio, etc., were varied, and their effects on latex properties studied. Compared with surfactant free latexes, a sharp increase in particle size was observed in latexes done with 0.1% of surfactant regardless of the nature of the surfactants used (anionic, nonionic and anionic with long chain of amphiphilic alkylphenyl polyethoxylate). Further increase in surfactant content, however, led to latexes with smaller particle size and narrower particle size distribution when compared between latexes prepared using a same surfactant. When amount of the oil soluble initiator, azobisisobutyronitrile, was increased, AC monomers conversion was increased. It is interesting to observe that PPO with long propylene oxides brought about larger particle size combined with broader size distribution and less charge on particle surface; whereas lower DMPA levels led to latexes also of larger size combined with broader size distribution but more charges on particle surface. AC monomer crosslinker, TMPTA, contributed to reduce particle size, narrower size distribution and lower particle surface charges. By increasing AC amount in PU–AC latex, latex particle size significantly increased accompanied by a remarkable increase in particle surface charges. Mechanisms of particle formation and of DMPA stabilization were discussed in order to understand the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call