Abstract
In this study, we have discussed the effect of strain distribution and optical properties on In0.14Ga0.86As matrix thickness variation (tmat) in self-assembled InAs quantum dot (QD) heterostructure using temperature and power-dependent photoluminescence (PL) measurements. The calculated ground-state transition energies are 1.12, 1.14 and 1.09 eV for tmat of 2, 4 and 6 ML (monolayer) In0.14Ga0.86As matrix thickness respectively. We also discern that the full-width at half-maximum (FWHM) broadens gradually as temperatures increases due to electron-phonon scattering. The calculated activation energy (Ea) values are 231, 302 and 98 meV for increasing tmat. The partial strain relief due to varying In0.14Ga0.86As layer thickness occurs due to QD size tunability by preventing Indium (In) segregation effect, that sets the possibility to understand about InAs inter-band and intersubband transitions of PL emission. This has been validated with HRXRD results where strain decreases linearly with increasing tmat. Here In0.14Ga0.86As layer acts as a strain-reducing layer (SRL) in QD heterostructure as well. Thus helps in reducing the hydrostatic strain (∊hyd) of InAs QDs, while the lower InGaAs layer increases the QD density, leading to a remarkable rise in PL intensity due to state filling of carriers. The effect of strain distribution for varying tmat in the heterostructure was also studied using nextnano++ simulations. The relative percentage change in hydrostatic (biaxial) strain was calculated to be 5.5% (8%) respectively. Thus, the results so obtained can help in tuning matrix thickness on the PL emission properties of QDs and therefore in the realization of several optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.