Abstract

Inlet flow direction significantly affects the hydraulic performance of an axial-flow pump. Usually, the research papers ignore this phenomenon, resulting in discrepancies between simulation and experimental results. This study examines the influence of inflow direction in five cases (0%, 5%, 10%, 15%, and 30% pre-swirl intensities) to determine the relationship between the pre-swirl intensity and the hydraulic performance of the axial-flow pump. Based on this, changing the setting angle of the inlet guide vane (IGV) is proposed and thoroughly investigated to reduce the effect of inflow direction. In this study, the influence of clearances in IGV blades on hydraulic performance is also investigated in detail. Numerical simulations are performed using ANSYS–CFX and a shear stress transport reattachment modification (SST k-omega) turbulence model with small y+ values at all walls. Specifically, the hydraulic performance curves and internal flow characteristics, including contours and streamlines, are assessed and analyzed. The inflow direction significantly impacts the hydraulic efficiency of the axial-flow pump. Increased pre-swirl intensity causes more loss in the IGV passage. The internal flow field and performance are not affected by the clearance at the hub and shroud of the IGV. However, the tip clearance of the impeller causes a decrease in hydraulic efficiency due to the tip leakage vortex. By adjusting the setting angle of the IGV, the efficiency and head gradually increase from a negative to a positive setting angle. Additionally, 30° is considered the critical setting angle for IGV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.