Abstract

A series of copper(ii) complexes derived from reduced Schiff base ligands has been synthesized and characterized by single-crystal X-ray diffraction and spectroscopic analyses. With the exception of [Cu(Ala5NO2)(H2O)] (), which crystallized as a mononuclear repeating unit, [Cu2L2(H2O)x(DMSO)y]·solvent (L = Ala5H (), Ala5OMe (), Ala5Cl (), Ala5Br (), Gly5Br (), Val5Br () and Leu5Br (), x = 1 or 2, y = 0 or 1, solvent = MeOH or DMSO and H2O) crystallized as phenoxo-bridged dinuclear building units containing Cu2O2 cores. In , , , and , the axial positions are occupied by solvent ligands and carboxylate oxygen atoms from adjacent dimers, resulting in the formation of 1D helical coordination polymers. In , a 2D network is constructed by utilizing weak CuO interactions (∼2.7 Å) with carboxylate groups. All complexes have been investigated for their catecholase activities with 3,5-DTBC, and they show significant catalytic activities except for . The catalytic activities are also observed to increase with increasing +I effects, as well as increase with increasing steric bulkiness on the α-carbon of the carboxylate group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.