Abstract

Fed-batch culture techniques were employed to grow Escherichia coli at high-cell densities for the intracellular production of a recombinant rhamnulose 1-phosphate aldolase (RhuA) under the transcriptional control of the strong promoter T5, using a commercially available expression system ( E. coli strain M15 and plasmid vector pQE40). A predetermined exponential feeding strategy at constant specific growth rate was selected to maintain carbon source limited growth using a defined medium. Growth rates below 0.36 h −1 did not cause a severe formation of acetic acid while cell concentration increased exponentially up to 95 g biomass l −1. The intrinsic biomass-substrate yield ( γ X/S = 0.48 g g −1) and the maintenance coefficient ( m S = 0.10 g substrate g biomass − 1 h −1) were calculated from fed-batch growths at different specific growth rates. These values have been employed to determinate the addition profile during the fed-batch growth until IPTG induction, reaching a specific RhuA production levels of 565 AU g biomass − 1 which was lower than in batch (1250 AU g biomass − 1 ). An inverse correlation between volumetric IPTG concentration and specific RhuA activity was found. A correlation between the ratio biomass/OD 600 nm and the quantity of recombinant protein produced was found. Finally, the proposed process, after optimization of the IPTG concentration, led to significant increase in enzyme concentration and volumetric productivity compared to batch mode (2680 and 1338%, respectively).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.