Abstract

Given the increasing number of older adults in society, there is a growing need for studies on changes in the aging brain. The aim of this research is to investigate the effective connectivity of different age groups using resting-state functional magnetic resonance imaging (fMRI) and graph theory. By examining connectivity in different age groups, a better understanding of age-related changes can be achieved. Lifespan pilot data from the Human Connectome Project (HCP) were used to examine dynamic effective connectivity (dEC) changes across different age groups. The Granger causality method with time windowing was employed to calculate dEC. After extracting graph measures, statistical analyses were performed to compare the age groups. Support vector machine and decision tree classifiers were used to classify the different age groups based on the extracted graph measures. Based on the obtained results, it can be concluded that there are significant differences in the effective connectivity among the three age groups. Statistical analyses revealed disassortativity. The global efficiency exhibited a decreasing trend, and the transitivity measure showed an increasing trend with the advancing age. The decision tree classifier showed an accuracy of with Kruskal-Wallis selected features. This study demonstrates that changes in effective connectivity across different age brackets can serve as a tool for better understanding brain function during the aging process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.