Abstract

A “two-body,” elasto-plastic finite element model is employed to simulate repeated rolling contact in the presence of a surface irregularity. It is shown that the maximum Mises stress and equivalent plastic strain values in the substrate are related to the height of the pressure spikes. The results of the finite element calculations are used to derive generalizations about the influence of the indent geometry on the pressure spikes, peak cyclic plastic strains and their location below the surface. These relations can serve as guidelines for designing the depth and properties of surface coatings and modified layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.