Abstract

Rolling contact fatigue tests were carried out on ring specimens made of quenched and tempered SAE 5135 gear steel with three different steel-production processes, through a bi-disc machine under pure rolling condition and water lubrication. Early formation of micro-pits then coalescing into macro-pits was observed on the rolling surface, while the final failure was caused by subsurface originated spalling phenomena. Microscope analysis of specimens section highlighted the complex surface and subsurface crack layout, and permitted to recognise sulphides as preferential sites for cracks initiation. The inclusion content was analysed throughout the extreme value statistics and the maximum expected inclusion in the Hertzian contact zone was introduced in a failure assessment diagram recently proposed, which resulted effective in predicting the specimen failures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.