Abstract

Fatigue crack growth rates were measured at room temperature in dry air for three 7075-T6 aluminum alloys with different inclusion content. Volume fractions of inclusions were determined for each alloy by the point count method with two different automated systems. Plots of the fatigue crack growth rate (da/dN) vs the stress-intensity-factor range (ΔK) show a well defined change of slope at the transition between plane strain and plane stress fracture. This transition is associated with a marked increase in the amount of fracture by void growth around inclusions. The volume fraction and mean spacing of voids within the cyclic plastic zone have been determined as a function of ΔK by quantitative fractography. Fracture by voids is important when the mean spacing of such voids is approximately equal to the width of the cyclic plastic zone in the plane of the crack. It is concluded that the inclusion content increases the fatigue-crack growth rates only within the plane stress range, that is for values of the stress-intensity-factor range ΔK \s> 20 kpsi√in.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.