Abstract

In industrial practice, variations in the steelmaking process may cause significant change in inclusion characteristics. During hot rolling of flat steel products, manganese sulfides, which are plastic at elevated temperatures, are elongated in the rolling direction. These elongated inclusions affect the formability properties, such as ductility, strain hardening exponent, average plastic strain ratio, critical strain represented by the forming limit diagram, and Charpy V- notch (CVN) impact energy as well as fracture behavior. The inclusion characteristics and microstructural features of three commercially produced hot- rolled deep- drawing quality steels were evaluated and their effects on formability and impact properties were investigated. All three heats were made in a basic oxygen furnace. Two heats were teemed into ingots while the other heat was argon purged and continuous cast. These heats were then processed into 3.10 mm thick strips with identical processing parameters. Manganese sulfide stringers were found to reduce the transverse ductility, whereas yield and tensile strengths remained virtually the same in all directions. The formability parameters were not significantly affected by small variations in inclusion characteristics. However, CVN impact energy and impact transition temperature data were observed to improve with steel cleanliness. The sulfide stringers were also found to adversely affect the impact energy, transition temperature, and fracture behavior in the transverse direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call