Abstract

Intermittent gas and liquid two-phase flow was generated in a 6 m × 67 mm diameter pipe mounted rotatable frame (vertical up to −20°). Air and a 5 mPa s silicone oil at atmospheric pressure were studied. Gas superficial velocities between 0.17 and 2.9 m/s and liquid superficial velocities between 0.023 and 0.47 m/s were employed. These runs were repeated at 7 angles making a total of 420 runs. Cross sectional void fraction time series were measured over 60 seconds for each run using a Wire Mesh Sensor and a twin plane Electrical Capacitance Tomography. The void fraction time series data were analysed in order to extract average void fraction, structure velocities and structure frequencies. Results are presented to illustrate the effect of the angle as well as the phase superficial velocities affect the intermittent flows behaviour. Existing correlations suggested to predict average void fraction and gas structures velocity and frequency in slug flow have been compared with new experimental results for any intermittent flow including: slug, cap bubble and churn. Good agreements have been seen for the gas structure velocity and mean void fraction. On the other hand, no correlation was found to predict the gas structure frequency, especially in vertical and inclined pipes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call