Abstract

Unscheduled DNA synthesis (UDS) induced by ultraviolet radiation (UV) was studied in human lymphocytes after exposing blood samples in vitro to doses ranging between 1 and 10 mGy gamma-radiation, by way of measuring tritiated thymidine (3H-TdR) uptake in the DNA of these lymphocytes. The results indicate that samples pre-exposed to gamma-ray doses ranging between 2.5 and 4 mGy show higher UDS levels compared with those pre-exposed to doses of less than 2.5 or more than 4 mGy. These results were verified by studying the rate of removal of UV-induced photoproducts using the comet assay. The reason for the increase in DNA repair capacity in this dose range is discussed in comparison with earlier reports on this phenomenon. The DNA repair capacity with respect to inter-individual variability and age is also analysed. The study implies that the comet assay is a simple and sensitive visual method to track nucleotide excision repair and hence can be used to estimate UV-induced DNA repair in the place of the more reliable yet cumbersome and time-consuming, grain-counting autoradiographic technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.