Abstract

Net photosynthetic rates (Pn) of easy (EK 16-3) and difficult-to-acclimatize (EK 11-1) sea oats genotypes were examined under the following culture conditions: (1) photoautotrophic [sugar-free medium, high photosynthetic photon flux (PPF), high vessel ventilation rates and CO2 enrichment, (PA)]; (2) modified photomixotrophic [sugar-containing medium diluted with sugar-free medium over time, high PPF, and high vessel ventilation rates (PM)]; (3) modified photomixotrophic enriched [same as PM with CO2 enrichment, (PME)]; or (4) conventional photomixotrophic [sugar-containing medium, low PPF, and low vessel ventilation rates (control)]. Regardless of genotype, plantlets cultured under PA conditions died within 2 wk, whereas under PM and PME conditions, plantlets increased their Pn. After 6 wk, Pn per gram dry weight was 1.7 times greater in EK 16-3 than EK 11-1 plantlets cultured under PME conditions. In vitro-produced leaves of EK 16-3 plantlets were elongated with expanded blades, whereas EK 11-1 produced short leaves without expanded blades, especially under control conditions. After in vitro culture, EK 16-3 PME plantlets exhibited the highest dry weights among treatments. EK 16-3 PME and EK 16-3 PM had similarly high survivability, shoot and root dry weights and leaf lengths ex vitro compared to EK 16-3 control and EK 11-1 PM and PME plantlets. Ex vitro growth, survivability and Pn per leaf area of either genotype were not affected by CO2 enrichment under modified photomixotrophic conditions. These results suggest that growth and survivability of sea oats genotypes with different acclimatization capacities can be enhanced by optimizing culture conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.