Abstract

BackgroundGlycogen average chain length (ACL) has been linked with bacterial durability, but this was on the basis of observations across different species. We therefore wished to investigate the relationship between bacterial durability and glycogen ACL by varying glycogen average chain length in a single species. It has been shown that progressive shortening of the N-terminus of glycogen branching enzyme (GBE) leads to a lengthening of oligosaccharide inter-α-1,6-glycosidic chain lengths, so we sought to harness this to create a set of Escherichia coli DH5α strains with a range of glycogen average chain lengths, and assess these strains for durability related attributes, such as starvation, cold and desiccation stress resistance, and biofilm formation.ResultsA series of Escherichia coli DH5α mutants were created with glgB genes that were in situ progressively N-terminus truncated. N-terminal truncation shifted the distribution of glycogen chain lengths from 5-11 DP toward 13-50 DP, but the relationship between glgB length and glycogen ACL was not linear. Surprisingly, removal of the first 270 nucleotides of glgB (glgBΔ270) resulted in comparatively high glycogen accumulation, with the glycogen having short ACL. Complete knockout of glgB led to the formation of amylose-like glycogen containing long, linear α1,4-glucan chains with significantly reduced branching frequency. Physiologically, the set of mutant strains had reduced bacterial starvation resistance, while minimally increasing bacterial desiccation resistance. Finally, although there were no obvious changes in cold stress resistance or biofilm forming ability, one strain (glgBΔ180) had significantly increased biofilm formation in favourable media.ConclusionsDespite glgB being the first gene of an operon, it is clear that in situ mutation is a viable means to create more biologically relevant mutant strains. Secondly, there was the suggestion in the data that impairments of starvation, cold and desiccation resistance were worse for the strain lacking glgB, though the first of these was not statistically significant. The results provide prima facie evidence linking abiotic stress tolerance with shorter glycogen ACL. However, further work needs to be done, perhaps in a less labile species. Further work is also required to tease out the complex relationship between glycogen abundance and glycogen structure.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-015-0421-9) contains supplementary material, which is available to authorized users.

Highlights

  • Glycogen average chain length (ACL) has been linked with bacterial durability, but this was on the basis of observations across different species

  • Construction of in situ N-terminal truncated GlgB in E. coli DH5α In order to construct bacterial strains with the same genetic background but accumulating differential ACL glycogen, a suite of E. coli DH5α strains with N-terminal progressively truncated glycogen branching enzyme (GBE) was constructed in situ (Figure 1A)

  • Quantitative RT-PCR showed that the glgB, glgX, glgC, glgA, and glgP in all the six E. coli DH5α strains were expressed at 20 h except for the full glgB knockout strain

Read more

Summary

Introduction

Glycogen average chain length (ACL) has been linked with bacterial durability, but this was on the basis of observations across different species. Glycogen is a major intracellular carbon and energy reserve in microorganisms, which is normally accumulated when a carbon source is abundant while other nutrients are deficient [1]. It is a hyperbranched homopolysaccharide consisting of only glucosyl residues, which were linked together by α-1,4-glycosidic bonds in linear chains and α-1,6-glycosidic bonds at branching points [1]. A connection between glycogen and trehalose may extend the function of glycogen to bacterial cold and desiccation resistance due to the protective role of trehalose under these stresses [13,14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call