Abstract

Effects of impurity scattering on tunneling conductance in dirty normal-metal/insulator/superconductor junctions are studied based on the Kubo formula and the recursive Green function method. The zero-bias conductance peak (ZBCP) is a consequence of the unconventional pairing symmetry in superconductors. The impurity scattering in normal metals suppresses the amplitude of the ZBCP. The degree of the suppression agrees well with results of the quasiclassical Green function theory. When superconductors have $d$+is-wave pairing symmetry, the time-reversal symmetry is broken in superconductors and the ZBCP splits into two peaks. The random impurity scattering reduces the height of the two splitting peaks. The position of the splitting peaks, however, almost remains unchanged even in the presence of the strong impurity scattering. Thus the two splitting peaks never merge into a single ZBCP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.