Abstract

The conversion of lignocellulosic biomass to valuable chemicals such as levulinic acid and γ-valerolactone is a promising approach for achieving a sustainable circular economy. However, the presence of impurities during the stepwise chemical processing chain of the biomass feedstock can significantly impact both the hydrolysis and hydrogenation steps implemented to convert the cellulosic feedstock to levulinic acid and further to γ-valerolactone, respectively. This review article explores the effects of those impurities by classifying them into two groups, namely endogenous and exogenous types, based on whether they originate directly from the raw lignocellulosic biomass or arise during its multi-step chemical processing. Endogenous impurities include heavy metals, alkali metals, alkaline earth metals, proteins, and side products from the downstream treatment of cellulose, while exogenous impurities are introduced during physical pre-treatments such as ball milling or during the hydrolysis step, or they might originate from the reactor setup. The specific catalyst deactivation by carbonaceous species such as humins and coke is considered. The mechanisms of impurity-induced catalyst deactivation and by-product formation are thoroughly discussed. Additionally, strategies for minimizing the detrimental effects of impurities on biomass conversion and enhancing catalytic efficiency and stability are also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.