Abstract

Experimental studies have been carried out on rats to understand the influence of immobilization stress (IMS), a psychological stressor and forced swim stress (FSS), a physical stressor in the neurotoxicity of lambda-cyhalothrin (LCT), a new generation type II synthetic pyrethroid with extensive applications. No significant change in plasma corticosterone levels and blood brain barrier (BBB) permeability was observed in rats subjected to IMS (one session of 15min/day), FSS (one session of 3min/day) for 28days or LCT treatment (3.0mg/kg body weight, p.o. suspended in groundnut oil) for 3days (26th, 27th and 28th day) as compared to controls. Marginal changes in the levels of biogenic amines and their metabolites (NE, EPN, DA, HVA, DOPAC, 5-HT) in hypothalamus, frontal cortex, hippocampus, and corpus striatum were observed in rats subjected to IMS or FSS or LCT alone as compared to controls. It was interesting to note that pre-exposure to IMS or FSS followed by LCT treatment for 3days caused a marked increase in plasma corticosterone levels associated with disruption in the BBB permeability as compared to rats exposed to IMS or FSS or LCT alone. Pre-exposure to IMS or FSS followed by LCT treatment for 3days resulted to alter the levels of biogenic amines and their metabolites in hypothalamus, frontal cortex, hippocampus, and corpus striatum as compared to rats exposed to IMS or FSS or LCT alone. Although neurochemical changes were more intense in rats pre-exposed to IMS as compared to those subjected to FSS on LCT treatment, the results indicate that both psychological and physical stress could be important influencing factors in the neurotoxicity of LCT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call