Abstract

It has been shown recently that minute additions of Cr in Al-Zn alloys refine the solidified grain structure and induce multiply-twinned grains which can only be explained if the icosahedral symmetry is considered (Kurtuldu et al., 2013). It has been suggested that Cr addition to Al-Zn alloys promotes the formation of icosahedral short-range order (ISRO) in the liquid, leading to the formation of icosahedral quasicrystals (iQC) acting then as a template for the nucleation of the fcc Al-phase. If ISRO exists in liquid Al-Zn-Cr alloys, this should influence diffusion of solute elements in the liquid. The present study focuses on the effect of Cr addition on Zn diffusion in liquid Al-Zn-Cr alloys. The solute diffusion coefficients of Zn and Cr in the liquid were deduced from the solute profiles in the quenched liquid ahead of a planar solid-liquid interface. By comparison with the same measurement in Al-Zn alloys, it is shown that Cr indeed slows down the diffusion (and mobility) of Zn atoms, an effect which reinforces the hypothesis of ISRO in Al-Zn liquid induced by Cr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.