Abstract

NiAl is an intermetallic compound with a brittle-to-ductile transition temperature of about 300°C at ambient pressure. At standard conditions, it is very difficult to deform, but fracture stress and fracture strain are increased under hydrostatic pressure (HP). On account of this, deformation at low temperatures is only possible at high HP, as for instance used in high pressure torsion (HPT). In order to study the influence of HP on texture evolution, small discs of polycrystalline NiAl were deformed by HPT at different temperatures ranging from room temperature to 500°C and different HPs. The influence of HP is presented for deformation at room temperature and 500°C. It is found that HP affects the formability of the samples as well as texture and microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.