Abstract
Eutrophication and the development of persistent opportunistic macroalgal blooms are recognised as one of the main detrimental effects of increased anthropogenic pressures on estuarine and coastal systems. This study aimed to highlight the interplay between pressures and controlling physical factors on ecosystem functioning. The hypothesis that hydrological regime can control the growth of opportunistic macroalgae was tested with the study of two Irish estuaries, the Argideen and the Blackwater, with similar nutrient loading sources but divergent hydrological regimes. Seasonal monitoring data was initially examination, while the application of a pre-existing box model allowed a further analysis of the influence of residence time and nutrient load modifications on macroalgal growth. Seasonal oscillations in monitored river flow rates altered nutrient transfer from the catchments to the estuaries in both cases, as is shown through differences between winter and summer nutrient concentrations. In the Argideen, however, the relative contribution of phosphorus (P) from adjacent marine waters was high due to the shorter residence times and greater influx of marine water into the estuary. Modelling studies showed that in the Argideen Estuary, P load reduction would have potentially minimal impact on macroalgal growth due to the shorter residence time which increased the influx of P from marine sources. Nitrogen (N) load reduction of 60 % had a significant, albeit limited, impact on macroalgae and was insufficient in achieving the environmental objectives for this waterbody. For the more river-dominated Blackwater Estuary, modelled reductions in P resulted in a considerable decrease in biomass. Any further P decreases would accentuate the existing disparity in estuarine N:P ratios with possible repercussions for N transport to the coastal system. Hence, the hydrological complexity of estuarine systems demonstrated dictates that a portfolio of separate, but complimentary, management approaches may be required to address eutrophication in these estuaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.