Abstract
AbstractRivers in climatic zones characterized by dry and wet seasons often experience periodic transitions between losing and gaining conditions across the river‐aquifer continuum. Infiltration shifts can stimulate hyporheic microbial biomass growth and cycling of riverine carbon and nitrogen leading to major exports of biogenic CO2 and N2 to rivers. In this study, we develop and test a numerical model that simulates biological‐physical feedback in the hyporheic zone. We used the model to explore different initial conditions in terms of dissolved organic carbon availability, sediment characteristics, and stochastic variability in aerobic and anaerobic conditions from water table fluctuations. Our results show that while highly losing rivers have greater hyporheic CO2 and N2 production, gaining rivers allowed the greatest fraction of CO2 and N2 production to return to the river. Hyporheic aerobic respiration and denitrification contributed 0.1–2 g/m2/d of CO2 and 0.01–0.2 g/m2/d of N2; however, the suite of potential microbial behaviors varied greatly among sediment characteristics. We found that losing rivers that consistently lacked an exit pathway can store up to 100% of the entering C/N as subsurface biomass and dissolved gas. Our results demonstrate the importance of subsurface feedbacks whereby microbes and hydrology jointly control fate of C and N and are strongly linked to wet‐season control of initial sediment conditions and hydrologic control of seepage direction. These results provide a new understanding of hydrobiological and sediment‐based controls on hyporheic zone respiration, including a new explanation for the occurrence of anoxic microzones and large denitrification rates in gravelly riverbeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.