Abstract

This paper aims to investigate the influence of hydrogen on the variation of mechanical properties and microstructure of diamond-like carbon (DLC) films synthesized by radio frequency plasma chemical vapor deposition (r.f.-PECVD). The DLC films were deposited on a silicon substrate ( p-type). The reactant gases employed in this paper are a mixture of acetylene and hydrogen. The ratio of hydrogen in the gas mixture was successively varied to clarify its influence on the roughness, thickness, microstructure, hardness, modulus, residual stress and wear depth for the DLC films. The results reveal that increasing the concentration of hydrogen decreases thickness and roughness. Meanwhile, increasing the hydrogen concentration causes the decrease of sp 3 ratio, hardness as well as modulus. Finally, wear behavior is correlated to the surface morphology and hydrogen concentration for deposition with hydrogen-containing reactant gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.