Abstract

The influence of high-pressure gaseous hydrogen environment (15 MPa) on the fatigue crack growth in forged Ti-6A1-4V at room temperature is investigated. It is observed that the fatigue crack growth (FCG) rate is fluctuating at 20 ≤ ΔK ≤ 26 MPa√m, and increase drastically at ΔK > 26 MPa√m in hydrogen environment. The effect of hydrogen on the FCG rate is dependent on the stress intensity level (ΔK). Detailed fractographic analysis of the fracture surfaces is performed at different ΔK using field emission scanning electron microscope (FE-SEM). The differences in appearance of fracture surfaces in air and hydrogen are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.