Abstract

Five biofilm airlift suspension (BAS) reactors filled with ceramic materials as biocarriers were used to investigate the hydrodynamics, liquid mixing, and biofilm detachment kinetics in the BAS reactor. A mathematical model was developed to describe the internal liquid circulation within the BAS reactor. The Froude number was introduced to correlate the relationship between the Froude number and superficial gas velocity at different biocarrier concentrations. The validity of the empirical model was verified over a wide range of experimental conditions and the result shows that the internal liquid circulation velocity was proportional to the square root of the reactor height and the superficial gas velocity. Because the internal liquid circulation flow rate was much larger than influent flow rate, the BAS reactor had a strong capacity to resist shock loading caused by the change in influent organic matter concentration. Shock loading resistance increased with the height of a BAS reactor. Although biofilm detachment was a very complicated process which involved many mechanisms, dimensional analysis was employed to successfully analyze the biofilm detachment kinetics. It was found that the biofilm detachment rate was proportional to the first power of the superficial gas velocity and biofilm thickness, and to the 2/3 power of the number of biocarriers in the reactor, respectively. Use of the Froude number and dimensional analysis provide an effective and accurate method to study the characteristics of the BAS reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.