Abstract

Halogenated flame retardants (HFRs) have properties similar to those of hydrophobic organic pollutants (HOPs). However, the understanding of their environmental fate in tidal estuaries remains limited. This study aims to bridge knowledge gaps regarding the land-sea transport of HFRs through riverine discharge into coastal waters. HFR levels were significantly influenced by tidal movement, and decabromodiphenyl ethane (DBDPE) was the predominant compound with a median concentration of 3340 pg L−1 in the Xiaoqing River estuary (XRE), whereas BDE209 had a median concentration of 1370 pg L−1. The Mihe River tributary plays a key role in transporting pollution to the downstream estuary of the XRE in summer, and the increasing suspended particulate matter (SPM) by resuspension in winter significantly affects HFR levels. These concentrations were inversely proportional to diurnal tidal oscillations. Tidal asymmetry caused an increase in SPM during an ebb tide, which increased HFR levels in a micro-tidal estuary such as the Xiaoqing River. The location of the point source and flow velocity influences the HFR concentrations during tidal fluctuations. Tidal asymmetry increases the likelihood of some HFRs being adsorbed by particles exported to the adjacent coast, and some settled down in areas with low hydrodynamic conditions, hindering their flow to the ocean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call