Abstract

Herein, hydrophobic coating materials are reported for QCM detection of VOCs under dry and humid conditions. In this study, IR780-based GUMBOS ([IR780][OTf] and [IR780][NTf2]) were synthesized using an ion exchange reaction and the anions trifluoromethanesulfonimide ([OTf]) and bisperfluoromethanesulfonimide ([NTf2]). The parent iodide salts and GUMBOS ([IR780][I]), [IR780][OTf], and [IR780][NTf2]) were characterized using several analytical techniques. These salts were then employed as sensor coatings on quartz crystal resonators using an electrospray coating method. These sensors were exposed to four flow ratios of five common VOCs in the absence and presence of 10 vol% water. Fundamental frequency responses were recorded and further employed as input variables to develop highly accurate multi-sensor arrays (MSAs). Accuracy was better than 78.3% without water, and better than 91.7% in the presence of water. When multi-harmonic responses were evaluated as input variables to assess discrimination ability for each sensor, highly accurate virtual sensor arrays (VSAs) were developed using each GUMBOS coating. In the case of [IR780][NTf2], a slight improvement in discrimination was achieved in the presence of water (95%) versus the absence of water. Moreover, this study highlights development of readily synthesized hydrophobic coatings of IR780-based GUMBOS for potential detection and discrimination of VOCs in aqueous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.