Abstract

Humic substances are not major objectives of water treatment in drinking water supply. But, as they often influence the treatment efficiency or participate in treatment reactions, their behaviour in the treatment process can significantly determine the process design. A very effective pretreatment step can be achieved by soil passage (e. g. bank filtration or slow sand filtration) which is usually involved in German surface water treatment processes. In this study transport phenomena of humic matter during underground passage are investigated with special attention to the alteration of their treatment behavior. In a fundamental work the deposition of humic substances was studied in a model system. Transport phenomena could mathematically be described by a filtration theory of colloidal transport. From the results of these calculations the collision efficiencies of humic substances on clean and coated surfaces can be derived. The humic substance deposition on subsurfaces is accompanied by a classification based on molecular weight. An additional alteration of dissolved humic matter due to microbiological degradation and partial resolvation of deposited humic matter was observed by passage of river water through columns containing actual soil. The alteration of dissolved organic matter during soil passage is finally characterized by its adsorption and chlorination precursor behaviour. All results confirm that bank filtration is an effective pretreatment step particulary due to the decrease in connection with improvement in treatability of humic matter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.