Abstract

The biogeochemical cycle of silver has been profoundly disturbed by various anthropogenic activities. To better understand the relationship among silver speciation, bioavailability, and toxicity in freshwaters, we have studied the short-term uptake of silver by two species of green algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata, in the presence or absence of a well-characterized humic acid (Suwannee River Humic Acid, SRHA). The free Ag(+) concentrations in the exposure solutions were determined using an equilibrium ion-exchange technique. According to the biotic ligand model, for a given free metal ion concentration, metal uptake should remain the same in the presence or absence of humic acid. However, short-term silver uptake in the presence of SRHA was greater than anticipated on the basis of free Ag(+) concentration. Subsequent determination of silver subcellular distribution revealed that significantly more silver was present in the "cell debris" fraction (known to contain the cell wall and fragmented membranes) in the presence of SRHA than in its absence. Finally, this increase in silver uptake in the presence of humic acid did not result in decreased algal growth. These results suggest that the increase in silver uptake observed in the presence of SRHA is surface-bound, not truly internalized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.