Abstract

Although the elevation angle of the arm affects the range of rotation, it has not been evaluated up to the maximal abduction angle. In this study we conducted an evaluation up to maximal abduction and determined the contact patterns at the glenohumeral (GH) joint. Fourteen healthy volunteers (12 men and 2 women; mean age, 26.9 years) with normal shoulders (14 right and 8 left) were instructed to rotate their shoulders at 0°, 90°, 135°, and maximal abduction for each shoulder at a time. Using 2-dimensional and 3-dimensional single-plane image registration, the internal rotation (IR), external rotation (ER), and range of motion (ROM; ie, axial rotations) at the thoracohumeral (TH) and GH joints, and the contribution ratio (%ROM = GH-ROM/TH-ROM) were calculated for each abduction. The glenoid position with respect to the humeral head was also analyzed. The TH-IR and TH-ER shifted toward an ER with increasing abduction angle, whereas the TH-ROM significantly decreased except at abduction between 0° and 90° (P < .001). The GH-IR and GH-ROM significantly decreased except at abduction between 0° and 90° (P < .001), but the GH-ER remained constant regardless of the abduction. The contribution ratio exceeded 80% for every abduction angle. The glenoid moved on the central and posterior areas of the humeral head at 0° and 90° abduction, respectively, and on the posterosuperior and anterosuperior areas at 135° and maximal abduction, respectively. Our results provide new knowledge about wide axial rotation up to maximal abduction and constant GH-ER at any abduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call