Abstract
Sulfidation of ferrihydrite is known to affect the degradation of contaminants, but little was known about the role of natural organic matter (NOM) in antibiotics degradation by sufidated ferrihydrite under redox-dynamic conditions. Here, a typical antibiotic (i.e., chloramphenicol (CAP)) was chosen to investigate how it redistributed when ferrihydrite reacted with reductive dissolved sulfide (S(-II)dis) in the presence of humate (HA) under dynamic anoxic/oxic environments. In anoxic environments, HA enhanced CAP reduction via dichlorination or decarboxylation by sufidated ferrihydrite in the low concentration of S(-II), while HA inhibited CAP reduction in the high concentration of S(-II) by the contribution of S(-II) and surface-bound Fe(II) (Fe(II)adsorbed). When the conditions transited from anoxic to oxic, remaining CAP molecules in solutions continued undergoing oxidative degradation to form the succinic acid, hexanedioic acid, CO2, and H2O by the attack of ·OH. Meantime, HA was adsorbed to ferrihydrite to block autocatalytic Fe(II) oxidation, which inhibited the generation of ·OH under oxic conditions. Additionally, from the density function theory (DFT) calculation and intermediate products analysis obtained from HPLC-MS/MS, two oxidative degradation pathways of CAP during the oxidation of sulfidated ferrihydrite have been proposed. Collectively, the framework elucidated different roles of HA in CAP elimination and environmental behavior of ferrihydrite when exposed to the S(-II) under the dynamic redox conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.