Abstract
The usage of principal component analysis (PCA) method in prediction of pharmacological classification of the drugs based on high-performance liquid chromatography (HPLC) retention data and on non-empirical structural parameters was studied. A group of 36 drugs of established pharmacological classification were chromatographed in ten carefully designed HPLC systems. Additionally, twelve structural descriptors were derived by molecular modeling studies based on the structural formula of considered drugs. A matrix of 36 x 22 HPLC data together with molecular properties parameters was subjected to chemometric analysis by PCA. Although that size of the training set could be sometimes disputable, the work remains as a demonstration of the basic methodology without the straight focus primarily intended asa report on a comprehensive predictive model. Nevertheless, the obtained clustering of drugs was in accordance with their pharmacological classification as well as chemical structures classification. The PCA method of the HPLC retention data and structural descriptors allowed to segregate drugs and drug candidates according to their pharmacological properties,and may be of potential help to limit the number of biological assays in the search for new drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Combinatorial Chemistry & High Throughput Screening
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.