Abstract

BackgroundImproving house structure is known to limit contact between humans and mosquitoes and reduce malaria transmission risk. In the present study, the influence of house characteristics on mosquito distribution and malaria transmission risk was assessed in the city of Yaoundé.MethodsThe study was conducted from March 2017 to June 2018 in 32 districts of the city of Yaoundé. Mosquito collections were performed indoor in 10 to 15 houses per district using CDC light traps. A total of 467 houses, selected randomly were used. A pretested questionnaire was submitted to participants of the study to collect information on the household: the number of people per house, education level, type of walls, presence of ceilings and eaves, number of windows, usage of long-lasting insecticidal nets (LLINs), number of bedroom and number of window. Mosquitoes collected were identified morphologically. Anophelines were tested by ELISA to detect infection by Plasmodium parasites. General Estimating Equations adjusting for repeated measures in the same house fitting negative binomial analysis were used to assess the influence of house characteristics on mosquito distribution.ResultsA total of 168,039 mosquitoes were collected; Culex spp emerged as the predominant species (96.48%), followed by Anopheles gambiae sensu lato (s.l.) (2.49%). Out of the 1033 An. gambiae s.l. identified by PCR, 90.03% were Anopheles coluzzii and the remaining were An. gambiae sensu stricto (s.s.) (9.97%). The high number of people per household, the presence of screens on window and the possession of LLINs were all associated with fewer mosquitoes collected indoors, whilst opened eaves, the high number of windows, the presence of holes in walls and living close to breeding sites were associated with high densities of mosquitoes indoor. Out of 3557 Anophelines tested using ELISA CSP, 80 were found infected by Plasmodium falciparum parasites. The proportion of mosquitoes infected did not vary significantly according to house characteristics.ConclusionThe study indicated that several house characteristics such as, the presence of holes on walls, opened eaves, unscreened window and living close to breeding sites, favored mosquito presence in houses. Promoting frequent use of LLINs and house improvement measures, such as the use of screen on windows, closing eaves, cleaning the nearby environment, should be integrated in strategies to improve malaria control in the city of Yaoundé.

Highlights

  • Improving house structure is known to limit contact between humans and mosquitoes and reduce malaria transmission risk

  • Amongst Anophelines, Anopheles gambiae sensu lato (s.l.) (0.56 mosquitoes/trap/night) was the most prevalent species followed by Anopheles funestus s.l. (0.07 mosquitoes/trap/night) and Anopheles ziemanni

  • Blocking entering points for mosquitoes such as closing eaves, placing a ceiling under the roof, putting screens on windows or constructing with cement walls could be essential improvements which could substantially reduce the density of mosquitoes entering houses

Read more

Summary

Introduction

Improving house structure is known to limit contact between humans and mosquitoes and reduce malaria transmission risk. The influence of house characteristics on mosquito distribution and malaria transmission risk was assessed in the city of Yaoundé. In Cameroon, the disease is still largely prevalent in both urban and rural settings [1, 6]. The persistence transmission of malaria in Yaoundé is considered to result from the frequent influx of migrants coming from rural settings where malaria is hyperendemic, and from an increase in unplanned urbanization, characterized by the extension of human settlements in wetland and the colonization of swamps for the practice of urban agriculture which favored vector population distribution and maintenance [9,10,11]. In Cameroon, the number of cities with more than 50,000 inhabitants has increased from 2 in the 1970s to over 50 nowadays [8, 12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.