Abstract

This study was designed to evaluate the effect of hot-etching surface treatment on the shear bond strength between zirconia ceramics and two commercial resin cements. Ceramic cylinders (120 units; length: 2.5 mm; diameter: 4.7 mm) were randomly divided into 12 groups (n = 10) according to different surface treatments (blank control; airborne-particle-abrasion; hot-etching) and different resin cements (Panavia F2.0; Superbond C and B) and whether or not a thermal cycling fatigue test (5°–55° for 5000 cycles) was performed. Flat enamel surfaces, mounted in acrylic resin, were bonded to the zirconia discs (diameter: 4.7 mm). All specimens were subjected to shear bond strength testing using a universal testing machine with a crosshead speed of 1 mm/min. All data were statistically analyzed using one-way analysis of variance and multiple-comparison least significant difference tests (α = 0.05). Hot-etching treatment produced higher bond strengths than the other treatment with both resin cements. The shear bond strength of all groups significantly decreased after the thermal cycling test; except for the hot-etching group that was cemented with Panavia F2.0 (p < 0.05). Surface treatment of zirconia with hot-etching solution enhanced the surface roughness and bond strength between the zirconia and the resin cement.

Highlights

  • High-strength materials such as zirconia can offer improved fracture resistance and longer-term viability [1,2]

  • The success of resin bonding relies on mechanical bonding through micromechanical interlocking from surface roughening, and chemical bonding between ceramic and cement [4,5]

  • The bond strengths were significantly lower after the thermal cycling test in all groups (p < 0.05) except for the hot-etching group that was cemented with Panavia F2.0 (p = 0.08)

Read more

Summary

Introduction

High-strength materials such as zirconia can offer improved fracture resistance and longer-term viability [1,2]. El-Korashy [17] noted that using a hot-etching surface treatment on zirconia formed unfavorable deep grooves which decreased, rather than increased, the bond strength to the resin cement. The inconsistency of these results may stem from the use of different hot-etching methods. The feasibility of hot-etching of zirconia clearly warrants further study The aim of this in vitro study was to actualize hot-etching technology with an effective and simple application using a reaction kettle, and to investigate changes in the surface morphology and bond strength between zirconia and resin cements after the etching procedure. The null hypotheses of this study were that the use of the surface hot-etching treatment would not influence the surface roughness of zirconia and would not affect the adhesion between zirconia and the resin cements

Preparation of Zirconia Specimens
Preparation of an Isolated Tooth
Cementing Procedure and Thermocycling Test
Shear Bond Strength Test and Fracture Mode Examination
Statistical Analysis
Results
Shear Bond Strength Test
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call